lunes, 6 de enero de 2014

Práctica 6. Ensayos de oxidación-reducción. Pila galvánica.



QUÍMICA EN LA INGENIERÍA

LABORATORIO


MEMORIA PRÁCTICA 6 – ENSAYOS DE OXIDACIÓN-REDUCCIÓN. PILA GALVÁNICA.


COMPONENTES:

  • Silvia Estébanez Ruiz.
  • Diego Fernández Cheliz.
  • Clara Fernández Perrote.

______________________________________________________________________________



ÍNDICE DE LA PRÁCTICA

  1. Fundamento de la práctica.
  2. Material y reactivos.
  3. Fundamento teórico.
  4. Método experimental.
  5. Cálculos.
  6. Posibles errores.
  7. Conclusiones.
  8. Figuras aclaratorias.

______________________________________________________________________________



  1. FUNDAMENTO DE LA PRÁCTICA.

Existen una serie de reacciones de oxidación-reducción que se caracterizan porque, en ellas, las dos partes implicadas van a modificar su número de protones. En este caso no hablaremos de ácidos y bases, sino de oxidantes (disminuye su número de oxidación, se reduce) y reductores (aumenta su número de oxidación, se oxida).

En esta práctica vamos a estudiar algunos de los efectos prácticos de estas reacciones.

De forma similar a como ocurre en las reacciones ácido-base, nos encontramos con que el agente que se reduce en la reacción directa se oxida en la inversa y viceversa.

Un ejemplo de este tipo de equilibrios podría ser:

Cu + Zn+2 ⥨ Cu+2 + Zn

Podríamos llevar a cabo un estudio de las dos reacciones por separado.

Estudiamos en primer lugar la reacción del cobre:

Cu Cu+2 + 2e-

En segundo lugar la del cinq:

Zn+2 + 2e- → Zn



Hay que tener en cuenta, que en la reacción global el número de electrones que se pierden en la oxidación, debe ser igual al ganado en la reducción. Por lo tanto, si nos encontráramos con dos semireacciones con un número diferente de electrones, deberíamos ajustarlas para que este número de electrones sea el mismo.

Estas reacciones van a ser importantes para la construcción de las pilas. Así mismo, se ha llevado a cabo la creación de una tabla de potenciales de reducción que nos permitirán conocer cuándo una reacción es espontánea u otras características de las reacciones. Para ello, se asigna al hidrógeno el potencial de reducción cero. Así, cuando un metal posea un potencial de reducción positivo (mayor que cero), este tenderá a reducirse; en caso contrario, tenderá a oxidarse; teniendo en cuenta que hablamos siempre de reacciones que ocurren entre un metal y el hidrógeno.



Vamos a imaginar una pila, construida según el ejemplo de reacción anterior:



Si estudiamos lo que ocurre en la disolución de cobre o en la de cinq, sin la presencia del puente salino; nos encontramos con que en cuanto se produjera la disolución de primer átomo de cobre o cinq, aparecería una diferencia de potencial entre en electrodo y la disolución que se opone a que la reacción continúe. Puesto que lo que se opone a la espontaneidad de la reacción es una diferencia de potencial, podemos eliminarlo conectando ambos electrodos. Sin embargo, es necesaria la presencia de un puente salino, pues las propias disoluciones también están ganando o perdiendo electrones. Este puente salino está compuesto por múltiples iones en disolución que permiten el paso de electrones y evitan la formación de potenciales que se oponen a la espontaneidad de la reacción.

En el caso propuesto, nos encontramos con la llamada pila Daniell, que se trata de una pila galvánica. Las pilas galvánicas son aquellas en las que la reacción se da de forma espontánea, sin necesidad de forzarla. En esta pila, cada semireacción ocurre en una semicelda. Podemos observar los electrodos sumergidos en las disoluciones y podemos ver como están conectados, obviamente, por un conductor eléctrico.

Por definición, se denomina ánodo al electrodo donde ocurre la oxidación y cátodo al electrodo donde tiene lugar la reducción.

La pila Daniell puede representarse de forma abreviada:

Zn(s) | Zn++(ac) || Cu++(ac) | Cu(s)

la primera celda representada es la anódica y la segunda la catódica.


  1. MATERIAL Y REACTIVOS.

Para llevar a cabo la práctica será necesario:

Material
Reactivos
9 tubos de ensayo
Gradilla
Pipetas Pasteur (cuentagotas)
Tubo en U (puente salino)
Algodón
Cables de conexión
Voltímetro
Zn,Fe y Pb en polvo o granalla
Hilo de Cu
HCl (6M)
Zn(NO3)2, Pb(NO3)2,Cu(NO3)2
Electrodo de aluminio y electrodo de cobre
Sulfato de cobre (II) pentahidratado CuSO4·5H2O
Cloruro de aluminio hexahidratado, AlCl3·6H2O


3.FUNDAMENTO TEÓRICO.

En una pila galvánica, podemos observar como los electrones fluyen del ánodo al cátodo debido a una diferencia de potencial. A esta diferencia de potencial se la denomina fuerza eletromotriz de la pila (E o Ԑ) y es la que impulsa a los electrones por el circuito externo.

Para llevar a cabo el estudio de la reacción que ocurre en la pila, podemos recurrir a la termodinámica. Para estudiar el equilibrio podemos recurrir a la energía libre de Gibbs. Será esta la que nos indique si el proceso que tiene lugar el o no espontáneo, siendo espontáneo cuando G es mayor que cero. Además, podemos relacionar esta energía con el trabajo útil:

Gº = - Wútil

Este trabajo dependerá de la carga transportada y de la diferencia de potencial entre las zonas donde se traslada la carga:

V= W

También se tiene en cuenta el número electrones que libera cada átomo y el número de átomos contenidos en un mol del elemento:

W= Eº·n·NA·qe-

La carga de un mol de electrones (NA·qe-) equivale a un Faraday (96500C).

Entonces:

Gº = - Wútil= -Eº·n·NA·qe- = - Eº·n·F

Además, podemos encontrarnos casos en los que la energía libre de Gibbs no esta medida en condiciones estándar, en ese caso:

E = Eº – (RT/nF)·lnQ

Por lo general, estos procesos se dan a tempertura ambiente, lo que significa que la temperatura del sistema no varía, luego (RT/F)=cte :

E = Eº – (0,059/n)·logQ

Esta última, es la llamada ecuación de Nerst. En ella, el potencial de reacción global procede del potencial de las semireacciones. De forma que:

Eº= Eºreducción + Eºoxidación

Eº=Eºcátodo - Eºánodo

La segunda ecuación es evidente. Cuando calculamos el potencial de reacción global a partir de los potenciales de reducción, debemos tener en cuenta que el potencial de oxidación es el valor del potencial de reducción cambiado de signo. Por lo tanto, ese potencial global es la suma de los potenciales de las distintas semiceldas o, lo que es lo mismo, la diferencia de los potenciales de reducción del cátodo y el ánodo.

Por lo tanto, para calcular el potencial global será necesario acudir a una tabla de potenciales normales de reducción.

Es importante tener en cuenta que para todo proceso redox se cumple que:

  • Si Eº>0 la reacción es espontánea.
  • Si Eº=0 la reacción está en equilibrio.
  • Si Eº<0 la reacción no es espontánea, se dará la reacción inversa.

Así pues, si nos encontramos con un sistema en equilibrio: 0=.nFE. Una fuerza electromotriz nula significa que no se está produciendo una reacción neta. Si sustituimos en la ecuación de Nerst:

log K= (nE)/(0,0592)

Los procesos redox suelen tener una k muy alta, lo que significa que la reacción está totalmente desplazada hacia la derecha y que, por lo tanto, la reacción es espontánea.
4.MÉTODO EXPERIMENTAL.

En esta práctica vamos a estudiar algunas propiedades de las reacciones redox:

    1. Comportamiento de algunos metales frente al ácido clorhídrico:
      Tomar tres tubos de ensayo limpios:
      1
      2
      3
      Punta de espátula de granalla de Zn
      20 gotas de HCl 6M
      Punta de espátula de limaduras de Fe
      20 gotas de HCl 6M
      Trozo de hilo de Cu

      20 gotas de HCl 6M
    2. Comportamiento de algunos metales en presencia de iones metálicos:
      Coger seis tubos de ensayo limpios:
      1
      2
      3
      4
      5
      6
      Zn(s)

      3mL Cu(NO3)2 0,1M
      Zn(s)

      3mL Pb(NO3)2 0,1M
      Cu(s)

      3mL Zn( NO3)2 0,1M
      Cu(s)

      3mL Pb(NO3)2 0,1M
      Pb(s)

      3mL Zn( NO3)2 0,1M
      Pb(s)

      3mL Cu(NO3)2 0,1M
    3. Construcción de una pila galvánica:
      Construir una pila galvánica formada por una disolución de cloruro de aluminio y una disolución de sulfato de cobre (II), ambas conectadas por un puente salino y con un electrodo de aluminio y cobre, respectivamente.
      Una vez construida la pila, medir la diferencia de potencial con ayuda de un voltímetro.


5.CÁLCULOS.

En este apartado vamos a contestar a las cuestiones propuestas:

Cuestión 1.Comportamiento de algunos metales frente a los ácidos: si ha observado algún cambio en los ensayos realizados indique la reacción redox que ha tenido lugar. Justifique los resultados experimentales.

Metal + HCl(ac)
¿reacciona?
Reacción redox iónica ajustada
Zn
si
Zn + 2H+ ⥨ Zn+2 + H2
Fe
si
Fe + 2H+ ⥨ Fe+2 + H2
Cu
no


 

Tanto en el cinq como en el hierro, podemos observar que se produce una reacción en la que se desprende un gas, pues tiene lugar un burbujeo. Como podemos observar en las reacciones, el gas desprendido es H2.

El hecho de que en estos dos metales sí se produzca reacción y en el cobre no, tiene que ver con los potenciales normales de reducción. Como ya dijimos anteriormente, el potencial de reducción del hidrógeno es cero y sirve como referencia para llevar a cabo la construcción de la tabla de potenciales normales de reducción. El hierro y el cinq tienen potenciales de reducción negativos, a diferencia del cobre que lo posee positivo; esto significa que tienden a oxidarse, mientras que el cobre tiende a reducirse. Puesto que todos se encuentran en presencia de iones H+, es evidente que solo podrán darse reacciones en las que este ión se reduzca, pues ya no posee ningún electrón, luego no podrá oxidarse. Por ese motivo no tiene lugar ningún tipo de reacción entre el cobre y el ión H+.


Cuestión 2.Comportamiento de algunos metales en presencia de iones metálicos: escriba la reacción (si la hubiere) indicando quién es el oxidante y quien el reductor, justifique los resultados experimentales.

Combinación
¿reaccionará?
Reacción iónica neta ajustada
oxidante
reductor
Zn(s) + [Cu++/NO3ˉ](ac)

Si
Zn(s) + Cu++ Zn2+ + Cu
Cu++
Zn
Zn(s) + [Pb++/NO3ˉ](ac)
Si
Zn(s) + Pb++ Zn2+ + Pb
Pb++
Zn
Cu(s) + [Zn++/NO3ˉ](ac)
No



Cu(s) + [Pb++/NO3ˉ](ac)
No



Pb(s) + [Zn++/NO3ˉ](ac)
No



Pb(s) + [Cu++/NO3ˉ](ac)
Si
Pb(s) + Cu++ Cu + Pb2+
Cu++
Pb


Explicación:

    • Los potenciales de reducción son: Zn=-0,76 y Cu=+0,34. Por lo tanto, el que se oxida debe ser el Zn, puesto que es el reductor será el que se oxide. Por lo tanto, si se da la reacción.
    • Los potenciales de reducción son: Zn=-0,76 y Pb=-0,13. Por lo tanto, se debe oxidar el Zn, puesto que es él quien pierde electrones, será el que se oxide y sí tiene lugar la reacción.
    • Los potenciales de reducción son: Cu=+0,34 y Zn=-0,76. Por lo tanto, se debe oxidar el Zn. Puesto que es el Cu quien pierde electrones, es este el que se oxida. Por lo tanto, la reacción no se da.
    • Los potenciales de reducción son: Cu=+0,34 y Pb=-0,13. Por lo tanto, se debe oxidar el Pb, puesto que es el Cu quien pierde electrones, es este el que se oxida y la reacción no se da.
    • Los potenciales de reducción son: Pb=-0,13 y Zn=-0,76. Por lo tanto, se debe oxidar el Zn, sin embargo es el Pb el que pierde electrones y la reacción no se da.
    • Los potenciales de reducción son: Pb=-0,13 y Cu=+0,34. Por lo tanto, debe oxidarse el Pb. Puesto que es el Pb quien pierde electrones, es este quien se oxida y si se da la reacción.



Cuestión 3.Construcción de una pila galvánica:

    1. Cómo preparar 1 litro de disolución 0,01M de AlCl3·6H2O:
      0,01=nmoles/L ; nmoles=0,01
      AlCl3·6H2O = 241,33 g/mol 241,33 · 0,01= 2,41g (gramos de soluto pesados)
    2. Cómo preparar 1 litro de disolución 0,01M de CuSO4·5H2O:
      nmoles=0,01
      CuSO4·5H2O = 233,62 g/mol 233,62·0,01=2,336g (gramos de soluto pesados)
    3. Escriba las semireacciones que tiene lugar en cada electrodo, así como la reacción total.

Ánodo
Al3(g) → Al3+ (ac) +3e-
Cátodo
Cu2+ (ac) + 2e- → Cu(s)
Reacción iónica neta total:
2Al3(g) + 3Cu2+ (ac) 2Al3+ (ac) + 3Cu(s)


             d. Escriba la notación de la pila e identifique el ánodo y el cátodo.
    Al3(g) | Al3+ (ac)|| Cu2+ (ac)| Cu(s)
    Ánodo             Cátodo
     
     
       e. Complete los siguientes datos.
 

Fuerza electromotriz estándar de la pila
Eº=
2 v
Fuerza electromotriz de la pila medida experimentalmente
Eº=
0,69 v
Fuerza electromotriz de la pila calculada por la ecuación de Nerst
Eº =



    1. Escriba la expresión de la constante de equilibrio y calcule su valor indicando los cálculos.
      LogK = (nE)/(0,0592);
    2. ¿Para qué sirve el puente salino?
      Es necesario para completar el circuito eléctrico. En este puente salino se encuentra la disolución de un electrolitro inerte ( NaCl o Na2SO4 ) de forma que los aniones SO42- o Cl- , migran del cátodo al ánodo para compensar la disminución de cationes; y los cationes Na+ migran del ánodo al cátodo para compensar el exceso de cationes producido por la oxidación.

6.POSIBLES ERRORES.

Los errores que se han podido cometer al llevar a cabo la fabricación de la pila galvánica son muy numerosos. Entre ellos podemos destacar la posibilidad de haber preparado mal las disoluciones que participarán en la reacción redox, ya que se puede cometer error en los cálculos, al pesar la cantidad de soluto y al tomar la cantidad necesaria de disolvente.

También es común que se cometa un error al preparar el puente salino, pues este debe ir taponado con una mínima cantidad de algodón de forma que el algodón se empape y no provoque la aparición de burbujas en el circuito en U, pues estas burbujas interrumpirían el paso de iones de una disolución a otra.


7.CONCLUSIONES.

    • A través de los potenciales de reducción podemos conocer si tendrá lugar o no una cierta reacción.
    • Gracias a la energía libre de Gibbs podemos conocer si una reacción tendrá lugar en su sentido directo o inverso. De esta forma podemos saber si una pila es galvánica, tiene lugar la reacción directa; o electrolítica, tiene lugar la reacción inversa.
    • La ecuación de Nerst deja en evidencia que los procesos redox que tiene lugar en las pilas galvánicas, suelen tener un alto valor de K, lo que significa que la reacción está totalmente desplazada hacia la derecha.











No hay comentarios:

Publicar un comentario